
Calculus 1
Midterm Exam – Solutions
September 30, 2024 (18:30 – 20:30)

1) Prove using the (ε, δ)-definition that lim
x→0

√
1− x2 = 1.

Solution. Let ε > 0 be arbitrary. We consider that cases ε > 1 and ε ≤ 1 separately.
Start by noting that the range of the real function f(x) =

√
1− x2 is the closed interval

[0, 1], that is
0 ≤

√
1− x2 ≤ 1.

Therefore
−1 ≤

√
1− x2 − 1 ≤ 0

so by taking the modulus, we get

0 ≤ |
√
1− x2 − 1| ≤ 1

This means that if ε > 1 then |
√
1− x2 − 1| ≤ 1 < ε holds for all x where f(x) is defined,

namely for all |x| ≤ 1. Thus any δ ≤ 1 is a good choice, since for any δ ≤ 1 having
0 < |x− 0| < δ guarantees |x| ≤ 1 and therefore implies |

√
1− x2 − 1| < ε.

If ε ≤ 1, then
|
√
1− x2 − 1| < ε ⇔ |x| <

√
2ε− ε2

as seen from the following equivalent inequalities:

|
√
1− x2 − 1| < ε (by definition)

−ε <
√
1− x2 − 1 < ε (add 1)

1− ε <
√
1− x2 < 1 + ε (square each expression)

(1− ε)2 < 1− x2 < (1 + ε)2 (subtract 1)

(1− ε)2 − 1 < −x2 < (1 + ε)2 − 1 (multiply by −1)

1− (1 + ε)2 < x2 < 1− (1− ε)2 (expand the brackets)

−2ε− ε2 < x2 < 2ε− ε2 (use that ε > 0 and x2 ≥ 0 for real x)

x2 < 2ε− ε2 (take square roots; it’s OK if ε < 2)

|x| <
√
2ε− ε2

This means that any δ ≤
√
2ε− ε2 is a good choice as having 0 < |x − 0| < δ implies

|x| <
√
2ε− ε2 which, as we saw, is equivalent to |

√
1− x2 − 1| < ε.

To summarize, we showed that for every ε > 0 there exists a δ > 0 such that if 0 < |x−0| < δ,
then |

√
1− x2−1| < ε. Therefore by the (ε, δ)-definition of limits we have lim

x→0

√
1− x2 = 1.

2) Apply l’Hospital’s rule to evaluate the following limit: lim
x→∞

xlnx

(lnx)x
. Indicate which rules of

differentiation are being used in each step.
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Solution. This limit is an indeterminate form of type “∞/∞” thus we may apply l’Hospital’s
Rule directly. To find the derivatives of the numerator and denominator, we use logarithmic
differentiation. For the numerator, we find

(xlnx)′ = (xlnx)
(
ln(xlnx)

)′
= (xlnx)([lnx][lnx])′ = (xlnx)

(
2
lnx

x

)
.

As for the denominator, we get(
(lnx)x

)′
=
[
(lnx)x

][
ln
(
(lnx)x

)]′
=
[
(lnx)x

][
x ln(lnx)

]′
=
[
(lnx)x

](
ln(lnx) +

1

lnx

)
.

Above we used the Law of Logarithms that says ln(ak) = k ln a as well as the Product Rule,
the Chain Rule and the derivatives (x)′ = 1, (lnx)′ = 1

x
. L’Hospital’s Rule yields

lim
x→∞

xlnx

(lnx)x
l’H
= lim

x→∞

(xlnx)′(
(lnx)x

)′ = lim
x→∞

(xlnx)

(
2
lnx

x

)
[
(lnx)x

](
ln(lnx) +

1

lnx

) .

If the original limit is L ̸= 0, we may divide both sides by L and use the Quotient Law to get

1 = lim
x→∞

2
lnx

x

ln(lnx) +
1

lnx

. (∗)

However we have

lim
x→∞

2
lnx

x
= 0 and lim

x→∞

(
ln(lnx) +

1

lnx

)
= ∞,

by l’Hospital’s Rule and the lim
x→∞

lnx = ∞, respectively. Therefore the limit on the right-

hand side of equation (∗) is zero and we get a contradiction, 1 = 0. Therefore our assumption
that the original limit is not zero must be false, that is

lim
x→∞

xlnx

(lnx)x
= 0.

Remark: Note that we can evaluate the limit without l’Hospital’s Rule. Introducing the new
variable u = lnx (and thus x = eu) lets us write

xlnx

(lnx)x
=

(eu)u

u(eu)
=

e(u
2)

(elnu)(e
u)

=
e(u

2)

e(eu lnu)
= e(u

2−eu lnu) (†)

If x → ∞, then u → ∞ and the exponent u2 − eu lnu tends to −∞. We can see this by
finding an upper bound for u2 − eu lnu that clearly goes to −∞ as u → ∞. Since lnu > 1
iff u > e, we have u2 − eu lnu < u2 − eu for all u > e. We also have eu > u+ u2 for u large

enough. Specifically, the Taylor series expansion for eu implies that eu >
u3

3!
for u ≥ 0, and

thus

u3

3!
> u+ u2 ⇔ u2 > 6 + 6u ⇔ (u− 3)2 > 15 ⇔ u > 3 +

√
15.
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So taking u > 3 +
√
16 = 3 + 4 = 7 ensures that eu > u + u2. Thus we have shown that if

u > 7, then u2 − eu lnu < u2 − (u+ u2) = −u hence using equation (†) we see that

0 ≤ xlnx

(lnx)x
≤ e−u =

1

eu
=

1

x
if x > e7.

(In fact, x > e7 is a very crude estimation as the above inequality already holds when x > 9.)

Thus we can conclude that lim
x→∞

xlnx

(lnx)x
= 0 by the Squeeze Theorem.

3) Use implicit differentiation to find an equation of the tangent line to the logarithmic spiral

arctan
y

x
= ln

√
x2 + y2 at the point

(√
3

2
eπ/6,

1

2
eπ/6

)
.

Solution. Let us write the right-hand side of the equation as ln
√

x2 + y2 =
1

2
ln(x2 + y2)

and differentiate both sides of the arctan
y

x
=

1

2
ln(x2 + y2) with respect to x. We get

1

1 +
y2

x2

· y
′x− y

x2
=

1

2
· 1

x2 + y2
· (2x+ 2yy′)

which is equivalent to

1

x2 + y2
· (y′x− y) =

1

2
· 1

x2 + y2
· (2x+ 2yy′)

which in turn is equivalent to
y′x− y = x+ yy′.

Solving this equation for y′ yields

y′ =
x+ y

x− y
if x ̸= y.

Thus y′ at the point

(√
3

2
eπ/6,

1

2
eπ/6

)
attains the value

√
3 + 1√
3− 1

= 2 + 2
√
3. Therefore an

equation for the tangent line is

y = (2 + 2
√
3)

(
x−

√
3

2
eπ/6

)
+

1

2
eπ/6.

4) Prove the following statement for every positive integer n.

If r > 1, then there exists a c ∈ (1, r) such that
1

n

n−1∑
k=0

rk = cn−1.
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Solution. If r > 1, then the n-th partial sum of the geometric series 1 + r+ r2 + . . . can be
written as

n−1∑
k=0

rk =
rn − 1

r − 1

for every positive integer n (as seen in the Lectures). The right-hand side as the slope of the
secant line for the function f(x) = xn over the interval [1, r]. Being an elementary function
f is continuous and differentiable over its domain, which in this case, is the entire number
line. Thus f is continuous on [1, r] and differentiable on (1, r). By the Mean Value Theorem
there exists a number c ∈ (1, r) such that

f ′(c) =
f(r)− f(1)

r − 1

the left-hand side of which, due to the Power Rule (xn)′ = nxn−1, can be written as ncn−1.
Therefore we obtain

ncn−1 =
n−1∑
k=0

rk.

Dividing both sides by n concludes the proof.

5) Compute the degree 2 Taylor polynomial of f(x) =
x− 3√
x2 + 3

around x = −1.

Solution. The function f(x) is the quotient of two differentiable functions, F (x) = x − 3
and G(x) =

√
x2 + 3 = (x2 + 3)1/2 therefore the derivative of f(x) can be calculated using

the Quotient Rule [
(
F
G

)′
= F ′G−FG′

G2 ]. We find that

f ′(x) =
(x− 3)′(x2 + 3)1/2 − (x− 3)((x2 + 3)1/2)′

((x2 + 3)1/2)2

=
(x2 + 3)1/2 − (x− 3)1

2
(x2 + 3)−1/2(2x)

x2 + 3

=
(x2 + 3)− x(x− 3)

(x2 + 3)3/2

=
3(x+ 1)

(x2 + 3)3/2
.

(1)

To compute the derivatives in the numerator we used the Difference Rule [(x−3)′ = (x)′−(3)′],
the Power Rule [(xn)′ = nxn−1], the Chain Rule [((x2 + 3)1/2)′ = 1

2
(x2 + 3)−1/2(x2 + 3)′],

and the Sum Rule [(x2 + 3)′ = (x2)′ + (3)′].
A similar calculation yields the second derivative

f ′′(x) =
(3x+ 3)′(x2 + 3)3/2 − (3x+ 3)((x2 + 3)3/2)′

((x2 + 3)3/2)2

=
3(x2 + 3)3/2 − (3x+ 3)3

2
(x2 + 3)1/2(2x)

(x2 + 3)3

=
3(x2 + 3)− 3x(3x+ 3)

(x2 + 3)5/2

=
−3(2x2 + 3x− 3)

(x2 + 3)5/2

(2)
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Here we applied the same rules of differentiation as before as well as the Constant Multiple
Rule. An alternative solution involves writing the denominator as (x2 + 3)−1/2 and applying
the Product Rule instead of the Quotient Rule to find the first and second order derivatives
of f(x).

We get f(−1) = −2.

Substituting x = −1 into (1) yields f ′(−1) = 0.

Plugging x = −1 into (2) yields f ′′(−1) = 3/8.

Therefore the quadratic Taylor polynomial T2(x) of f(x) around x = −1 reads

T2(x) = −2 + 3
16
(x+ 1)2 = 1

16
(3x2 + 6x− 29).

6) Find the value f(2) given that the graph of f passes through the point (1, 4) and the slope
of the tangent line at

(
x, f(x)

)
is 2x+ lnx.

Solution. Having f ′(x) = 2x+ lnx implies that f has the general form

f(x) =
w
(2x+ lnx) dx = x2 + x lnx− x+ C,

where the indefinite integral was found by using the Sum Rule, Power Rule and, in the case
of

r
lnx dx, Integration by Parts (with u = lnx, dv = dx). The graph of f passing through

the point (1, 4) means that 4 = f(1) = 12 + 1 ln 1− 1 + C = C. Thus the function is

f(x) = x2 + x lnx− x+ 4

and therefore
f(2) = 22 + 2 ln 2− 2 + 4 = 6 + 2 ln 2.
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