

1) Prove using the (ε, δ) -definition that $\lim_{x \to 0} \sqrt{1 - x^2} = 1$.

Solution. Let $\varepsilon > 0$ be arbitrary. We consider that cases $\varepsilon > 1$ and $\varepsilon \le 1$ separately.

Start by noting that the range of the real function $f(x) = \sqrt{1 - x^2}$ is the closed interval [0, 1], that is

$$0 \le \sqrt{1 - x^2} \le 1.$$

Therefore

$$-1 \le \sqrt{1 - x^2} - 1 \le 0$$

so by taking the modulus, we get

$$0 \le |\sqrt{1 - x^2} - 1| \le 1$$

This means that if $\varepsilon > 1$ then $|\sqrt{1-x^2}-1| \le 1 < \varepsilon$ holds for all x where f(x) is defined, namely for all $|x| \le 1$. Thus any $\delta \le 1$ is a good choice, since for any $\delta \le 1$ having $0 < |x-0| < \delta$ guarantees $|x| \le 1$ and therefore implies $|\sqrt{1-x^2}-1| < \varepsilon$.

If $\varepsilon \leq 1$, then

$$\sqrt{1-x^2} - 1 | < \varepsilon \quad \Leftrightarrow \quad |x| < \sqrt{2\varepsilon - \varepsilon^2}$$

as seen from the following equivalent inequalities:

 $|\sqrt{1-x^2}-1| < \varepsilon$ (by definition) $-\varepsilon < \sqrt{1-x^2} - 1 < \varepsilon$ (add 1) $1 - \varepsilon < \sqrt{1 - x^2} < 1 + \varepsilon$ (square each expression) $(1-\varepsilon)^2 < 1-x^2 < (1+\varepsilon)^2$ (subtract 1) $(1-\varepsilon)^2 - 1 < -x^2 < (1+\varepsilon)^2 - 1$ (multiply by -1) $1 - (1 + \varepsilon)^2 < x^2 < 1 - (1 - \varepsilon)^2$ (expand the brackets) $-2\varepsilon - \varepsilon^2 < x^2 < 2\varepsilon - \varepsilon^2$ (use that $\varepsilon > 0$ and $x^2 > 0$ for real x) $x^2 < 2\varepsilon - \varepsilon^2$ (take square roots; it's OK if $\varepsilon < 2$) $|x| < \sqrt{2\varepsilon - \varepsilon^2}$

This means that any $\delta \leq \sqrt{2\varepsilon - \varepsilon^2}$ is a good choice as having $0 < |x - 0| < \delta$ implies $|x| < \sqrt{2\varepsilon - \varepsilon^2}$ which, as we saw, is equivalent to $|\sqrt{1 - x^2} - 1| < \varepsilon$.

To summarize, we showed that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x-0| < \delta$, then $|\sqrt{1-x^2}-1| < \varepsilon$. Therefore by the (ε, δ) -definition of limits we have $\lim_{x \to 0} \sqrt{1-x^2} = 1$.

2) Apply l'Hospital's rule to evaluate the following limit: $\lim_{x\to\infty} \frac{x^{\ln x}}{(\ln x)^x}$. Indicate which rules of differentiation are being used in each step.

Solution. This limit is an indeterminate form of type " ∞/∞ " thus we may apply l'Hospital's Rule directly. To find the derivatives of the numerator and denominator, we use logarithmic differentiation. For the numerator, we find

$$(x^{\ln x})' = (x^{\ln x}) \left(\ln(x^{\ln x}) \right)' = (x^{\ln x}) ([\ln x][\ln x])' = (x^{\ln x}) \left(2\frac{\ln x}{x} \right)$$

As for the denominator, we get

$$\left((\ln x)^x\right)' = \left[(\ln x)^x\right] \left[\ln\left((\ln x)^x\right)\right]' = \left[(\ln x)^x\right] \left[x\ln(\ln x)\right]' = \left[(\ln x)^x\right] \left(\ln(\ln x) + \frac{1}{\ln x}\right).$$

Above we used the Law of Logarithms that says $\ln(a^k) = k \ln a$ as well as the Product Rule, the Chain Rule and the derivatives (x)' = 1, $(\ln x)' = \frac{1}{x}$. L'Hospital's Rule yields

$$\lim_{x \to \infty} \frac{x^{\ln x}}{(\ln x)^x} \stackrel{\text{'H}}{=} \lim_{x \to \infty} \frac{(x^{\ln x})'}{\left((\ln x)^x\right)'} = \lim_{x \to \infty} \frac{(x^{\ln x})\left(2\frac{\ln x}{x}\right)}{\left[(\ln x)^x\right]\left(\ln(\ln x) + \frac{1}{\ln x}\right)}$$

If the original limit is $L \neq 0$, we may divide both sides by L and use the Quotient Law to get

$$1 = \lim_{x \to \infty} \frac{2\frac{\ln x}{x}}{\ln(\ln x) + \frac{1}{\ln x}}.$$
(*)

However we have

$$\lim_{x \to \infty} 2\frac{\ln x}{x} = 0 \quad \text{and} \quad \lim_{x \to \infty} \left(\ln(\ln x) + \frac{1}{\ln x} \right) = \infty$$

by l'Hospital's Rule and the $\lim_{x\to\infty} \ln x = \infty$, respectively. Therefore the limit on the righthand side of equation (*) is zero and we get a contradiction, 1 = 0. Therefore our assumption that the original limit is not zero must be false, that is

$$\lim_{x \to \infty} \frac{x^{\ln x}}{(\ln x)^x} = 0$$

Remark: Note that we can evaluate the limit without l'Hospital's Rule. Introducing the new variable $u = \ln x$ (and thus $x = e^u$) lets us write

$$\frac{x^{\ln x}}{(\ln x)^x} = \frac{(e^u)^u}{u^{(e^u)}} = \frac{e^{(u^2)}}{(e^{\ln u})^{(e^u)}} = \frac{e^{(u^2)}}{e^{(e^u \ln u)}} = e^{(u^2 - e^u \ln u)} \tag{\dagger}$$

If $x \to \infty$, then $u \to \infty$ and the exponent $u^2 - e^u \ln u$ tends to $-\infty$. We can see this by finding an upper bound for $u^2 - e^u \ln u$ that clearly goes to $-\infty$ as $u \to \infty$. Since $\ln u > 1$ iff u > e, we have $u^2 - e^u \ln u < u^2 - e^u$ for all u > e. We also have $e^u > u + u^2$ for u large enough. Specifically, the Taylor series expansion for e^u implies that $e^u > \frac{u^3}{3!}$ for $u \ge 0$, and thus

$$\frac{u^3}{3!} > u + u^2 \quad \Leftrightarrow \quad u^2 > 6 + 6u \quad \Leftrightarrow \quad (u - 3)^2 > 15 \quad \Leftrightarrow \quad u > 3 + \sqrt{15}.$$

So taking $u > 3 + \sqrt{16} = 3 + 4 = 7$ ensures that $e^u > u + u^2$. Thus we have shown that if u > 7, then $u^2 - e^u \ln u < u^2 - (u + u^2) = -u$ hence using equation (†) we see that

$$0 \le \frac{x^{\ln x}}{(\ln x)^x} \le e^{-u} = \frac{1}{e^u} = \frac{1}{x} \qquad \text{if } x > e^7.$$

(In fact, $x > e^7$ is a very crude estimation as the above inequality already holds when x > 9.)

Thus we can conclude that $\lim_{x\to\infty} \frac{x^{\ln x}}{(\ln x)^x} = 0$ by the Squeeze Theorem.

3) Use implicit differentiation to find an equation of the tangent line to the logarithmic spiral $\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$ at the point $\left(\frac{\sqrt{3}}{2}e^{\pi/6}, \frac{1}{2}e^{\pi/6}\right)$.

Solution. Let us write the right-hand side of the equation as $\ln \sqrt{x^2 + y^2} = \frac{1}{2} \ln(x^2 + y^2)$ and differentiate both sides of the $\arctan \frac{y}{x} = \frac{1}{2} \ln(x^2 + y^2)$ with respect to x. We get

$$\frac{1}{1+\frac{y^2}{x^2}} \cdot \frac{y'x-y}{x^2} = \frac{1}{2} \cdot \frac{1}{x^2+y^2} \cdot (2x+2yy')$$

which is equivalent to

$$\frac{1}{x^2 + y^2} \cdot (y'x - y) = \frac{1}{2} \cdot \frac{1}{x^2 + y^2} \cdot (2x + 2yy')$$

which in turn is equivalent to

$$y'x - y = x + yy'.$$

Solving this equation for y' yields

$$y' = \frac{x+y}{x-y}$$
 if $x \neq y$.

Thus y' at the point $\left(\frac{\sqrt{3}}{2}e^{\pi/6}, \frac{1}{2}e^{\pi/6}\right)$ attains the value $\frac{\sqrt{3}+1}{\sqrt{3}-1} = 2 + 2\sqrt{3}$. Therefore an equation for the tangent line is

$$y = (2 + 2\sqrt{3})\left(x - \frac{\sqrt{3}}{2}e^{\pi/6}\right) + \frac{1}{2}e^{\pi/6}.$$

4) Prove the following statement for every positive integer n.

If
$$r>1$$
, then there exists a $c\in(1,r)$ such that $\displaystyle rac{1}{n}\displaystyle\sum_{k=0}^{n-1}r^k=c^{n-1}.$

Solution. If r > 1, then the *n*-th partial sum of the geometric series $1 + r + r^2 + ...$ can be written as

$$\sum_{k=0}^{n-1} r^k = \frac{r^n - 1}{r - 1}$$

for every positive integer n (as seen in the Lectures). The right-hand side as the slope of the secant line for the function $f(x) = x^n$ over the interval [1, r]. Being an elementary function f is continuous and differentiable over its domain, which in this case, is the entire number line. Thus f is continuous on [1, r] and differentiable on (1, r). By the Mean Value Theorem there exists a number $c \in (1, r)$ such that

$$f'(c) = \frac{f(r) - f(1)}{r - 1}$$

the left-hand side of which, due to the Power Rule $(x^n)' = nx^{n-1}$, can be written as nc^{n-1} . Therefore we obtain

$$nc^{n-1} = \sum_{k=0}^{n-1} r^k.$$

Dividing both sides by n concludes the proof.

5) Compute the degree 2 Taylor polynomial of $f(x) = \frac{x-3}{\sqrt{x^2+3}}$ around x = -1.

Solution. The function f(x) is the quotient of two differentiable functions, F(x) = x - 3 and $G(x) = \sqrt{x^2 + 3} = (x^2 + 3)^{1/2}$ therefore the derivative of f(x) can be calculated using the Quotient Rule $\left[\left(\frac{F}{G}\right)' = \frac{F'G - FG'}{G^2}\right]$. We find that

$$f'(x) = \frac{(x-3)'(x^2+3)^{1/2} - (x-3)((x^2+3)^{1/2})'}{((x^2+3)^{1/2})^2}$$

= $\frac{(x^2+3)^{1/2} - (x-3)\frac{1}{2}(x^2+3)^{-1/2}(2x)}{x^2+3}$
= $\frac{(x^2+3) - x(x-3)}{(x^2+3)^{3/2}}$
= $\frac{3(x+1)}{(x^2+3)^{3/2}}$. (1)

To compute the derivatives in the numerator we used the Difference Rule [(x-3)' = (x)' - (3)'], the Power Rule $[(x^n)' = nx^{n-1}]$, the Chain Rule $[((x^2 + 3)^{1/2})' = \frac{1}{2}(x^2 + 3)^{-1/2}(x^2 + 3)']$, and the Sum Rule $[(x^2 + 3)' = (x^2)' + (3)']$.

A similar calculation yields the second derivative

$$f''(x) = \frac{(3x+3)'(x^2+3)^{3/2} - (3x+3)((x^2+3)^{3/2})'}{((x^2+3)^{3/2})^2}$$

= $\frac{3(x^2+3)^{3/2} - (3x+3)\frac{3}{2}(x^2+3)^{1/2}(2x)}{(x^2+3)^3}$
= $\frac{3(x^2+3) - 3x(3x+3)}{(x^2+3)^{5/2}}$
= $\frac{-3(2x^2+3x-3)}{(x^2+3)^{5/2}}$ (2)

Here we applied the same rules of differentiation as before as well as the *Constant Multiple Rule*. An alternative solution involves writing the denominator as $(x^2 + 3)^{-1/2}$ and applying the *Product Rule* instead of the *Quotient Rule* to find the first and second order derivatives of f(x).

We get f(-1) = -2.

Substituting x = -1 into (1) yields f'(-1) = 0.

Plugging x = -1 into (2) yields f''(-1) = 3/8.

Therefore the quadratic Taylor polynomial $T_2(x)$ of f(x) around x = -1 reads

$$T_2(x) = -2 + \frac{3}{16}(x+1)^2 = \frac{1}{16}(3x^2 + 6x - 29).$$

6) Find the value f(2) given that the graph of f passes through the point (1, 4) and the slope of the tangent line at (x, f(x)) is $2x + \ln x$.

Solution. Having $f'(x) = 2x + \ln x$ implies that f has the general form

$$f(x) = \int (2x + \ln x) \, dx = x^2 + x \ln x - x + C,$$

where the indefinite integral was found by using the Sum Rule, Power Rule and, in the case of $\int \ln x \, dx$, Integration by Parts (with $u = \ln x$, dv = dx). The graph of f passing through the point (1, 4) means that $4 = f(1) = 1^2 + 1 \ln 1 - 1 + C = C$. Thus the function is

$$f(x) = x^2 + x \ln x - x + 4$$

and therefore

$$f(2) = 2^2 + 2\ln 2 - 2 + 4 = 6 + 2\ln 2.$$