Calculus 1

; university of
Midterm Exam — Solutions / groningen

September 30, 2024 (18:30-20:30)

1) Prove using the (e, d)-definition that lin% vV1—a22=1
z—

Solution. Let € > 0 be arbitrary. We consider that cases ¢ > 1 and € < 1 separately.
Start by noting that the range of the real function f(z) = /1 — 22 is the closed interval

[0,1], that is
0<+vV1—-2%2<1.
Therefore
—1<V1—-22-1<0

so by taking the modulus, we get

0<|V1I—-22-1]<1

This means that if ¢ > 1 then |/1 — 22 — 1] < 1 < ¢ holds for all = where f(x) is defined,
namely for all || < 1. Thus any § < 1 is a good choice, since for any 6 < 1 having
0 < |z — 0] < 0 guarantees || < 1 and therefore implies [v/1 — 2% — 1| < e.

If ¢ <1, then

WVl-22—-1]<e & |z]<V2e—¢?

as seen from the following equivalent inequalities:

IV1—22—-1|<e
—e<Vl—-22-1<e¢
l—e<vVl—a2<1l+c¢
(1—eP<l—2°<(1+¢)?
(l—eP—-1<-a?<(1+e)?-1
I-(14eP<a®<1—(1-¢)?
2 —e? <t <2 &2
r? < 2 — €2

|z] < V2e — g2

This means that any § < v/2e — &2 is a good choice as having 0 < |z — 0] < § implies

|z| < v/2¢ — 2 which, as we saw, is equivalent to |[v1 — 22 — 1] < e.

by definition)
add 1)

square each expression)

subtract 1)

multiply by —1)

expand the brackets)

use that ¢ > 0 and z® > 0 for real z)
take square roots; it's OK if ¢ < 2)

(
(
(
(
(
(
(
(

To summarize, we showed that for every ¢ > 0 there exists a 6 > 0 such that if 0 < |z—0| < ¢,
then |[v/1 — 22 — 1| < €. Therefore by the (g, §)-definition of limits we have lin%) v1—z2=1
T—

Inx

2) Apply I'Hospital’s rule to evaluate the following limit: lim (Ix—) Indicate which rules of
z—oo (In x)*

differentiation are being used in each step.
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Solution. This limit is an indeterminate form of type “co/o0” thus we may apply I'Hospital'’s
Rule directly. To find the derivatives of the numerator and denominator, we use logarithmic
differentiation. For the numerator, we find

(xlnm), = (Ilnz)(ln(xlnx)), = (xlnx)([lnx][lnx])/ = (xln‘”) <21n_x) _

T

As for the denominator, we get

((lnx)’”), = [(Inz)*][In ((In x)“’)}/ = [(Inz)"] [z In(In a:)}/ = [(Inz)"] (ln(ln z)+ L) :

Inz

Above we used the Law of Logarithms that says In(a*) = kIna as well as the Product Rule,
the Chain Rule and the derivatives (z)’ = 1, (Inz)’ = 2. L'Hospital’s Rule yields

ey (222)

Inz Inx\/
lim (lx ] H lim ﬁ = lim N
T—00 nr z T—00 ne x T—00
Inz)*| | In(l —
[( nx) } (n( nzx)+ lnx)
If the original limit is L # 0, we may divide both sides by L and use the Quotient Law to get
e
_ 1 x
b= lim T (+)
11’1(111 ZL’) + E
However we have
1 1
lim 20 =0 and lim (ln(lna:) + —) = 0,
T—00 x T—00 Inx

by I'Hospital's Rule and the lim Inz = oo, respectively. Therefore the limit on the right-

T—00
hand side of equation (x) is zero and we get a contradiction, 1 = 0. Therefore our assumption

that the original limit is not zero must be false, that is

Remark: Note that we can evaluate the limit without I'Hospital’s Rule. Introducing the new
variable u = Inz (and thus z = e*) lets us write
xlna: B (eu)u e(uz) B(u2)

— — — _ (u?—e* Inu)
(hl x)z U(eu) (elnu)(eu) @(eu Inw) € (T)

If x — o0, then u — 0o and the exponent u? — e*Inwu tends to —oo. We can see this by
finding an upper bound for u? — e*Inu that clearly goes to —o0o as u — co. Since Inu > 1

iff u > e, we have u? — e“lnu < u? — e for all u > e. We also have e* > u + u? for u large
3

enough. Specifically, the Taylor series expansion for ¢" implies that e* > % for u > 0, and
thus '

w3
3 >u+u’ & uW>6+6u & (u—-3)7>15 & u>3+VI15.
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So taking u > 3 + /16 = 3 + 4 = 7 ensures that e* > u + u?. Thus we have shown that if

u > 7, then u? — e“Inu < u? — (u+ u?) = —u hence using equation (1) we see that
Inx
T 1 1
0< <eg = —=—- if x> e,
(Inx)® et

(In fact, z > €7 is a very crude estimation as the above inequality already holds when z > 9.)

Inx

Thus we can conclude that lim
T—00 (ln :1:)

— = ( by the Squeeze Theorem.

3) Use implicit differentiation to find an equation of the tangent line to the logarithmic spiral

3 1
arctan 2 = In /7% + y? at the point (%_Gﬂ/(j, §€7r/6> -
x

1
Solution. Let us write the right-hand side of the equation as In /22 + y2 = 3 In(z? + y?)

1
and differentiate both sides of the arctan 2 — 5 In(2? + y?) with respect to z. We get
x

1 yr—y 1 1 ,

. - . (2749

I 3 iy (27 + 2yy)
1+ =5
T

which is equivalent to

1
x? + y?

1
x? + y?

(Yr—y) = - (22 + 2yy)

N | —

which in turn is equivalent to
yr—y=x+yy.
Solving this equation for 3’ yields

Tty

if x £ y.

V3+1
V3-1

3 1
Thus 3/ at the point \/7_6”/6, §€7T/6> attains the value =2+ 2v/3. Therefore an

equation for the tangent line is

3 1
y = (2+2V3) (x - ge”m) + 56“/6.

4) Prove the following statement for every positive integer n.

n—1
If » > 1, then there exists a ¢ € (1,r) such that — Zrk ="l
n
k=0
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Solution. If » > 1, then the n-th partial sum of the geometric series 1 +7 + 12+ ... can be

written as
—1

3

ko r"—1
r—1

(]

r

e

=0
for every positive integer n (as seen in the Lectures). The right-hand side as the slope of the
secant line for the function f(z) = 2™ over the interval [1,7]. Being an elementary function
f is continuous and differentiable over its domain, which in this case, is the entire number
line. Thus f is continuous on [1,r] and differentiable on (1,7). By the Mean Value Theorem
there exists a number ¢ € (1,r) such that

flr) = /()

flle) =12

the left-hand side of which, due to the Power Rule (z")" = nz™ !, can be written as nc¢® 1.
Therefore we obtain

Dividing both sides by n concludes the proof.
r—3
Va?+3
Solution. The function f(x) is the quotient of two differentiable functions, F(z) = z — 3

and G(x) = V22 + 3 = (2 + 3)'/? therefore the derivative of f(z) can be calculated using
the Quotient Rule [(£)" = F'6=FC"]. We find that

5) Compute the degree 2 Taylor polynomial of f(z) = around z = —1.

(x —3) (2 +3)/2 — (z — 3)((z% + 3)1/?)

(CEDLLE
(2% 4 3)Y/2 — (2 — 3)3(a® + 3)~1/2(22)

243

(@ +3) —z(z—3) (1)
N (22 + 3)3/2
3z +1)
“ g

f'(w) =

To compute the derivatives in the numerator we used the Difference Rule [(z—3)' =
the Power Rule [(z™) = na"~'], the Chain Rule [((z* + 3)'/?) = L(2? 4+ 3)7'/%(2* + 3)’
and the Sum Rule [(z* + 3)" = (2*)" + (3)'].

A similar calculation yields the second derivative

() = (3z + 3) (2% + 3)*% — (3z + 3)((2? + 3)*/2)
(22 +3)72)2
_ 3@+ 3)3/2 — (3x + 3)3 (2 + 3)1/2(2x)
J (224 3)3 2)

_ 3(2* +3) = 3x(3z + 3)

a (22 + 3)5/2

~ —3(22% 4 3z — 3)

(22 + 3)5/2
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Here we applied the same rules of differentiation as before as well as the Constant Multiple
Rule. An alternative solution involves writing the denominator as (22 + 3)~%/2 and applying
the Product Rule instead of the Quotient Rule to find the first and second order derivatives

of f(x).

We get f(—1) = —2.

Substituting x = —1 into (1) yields f’(—1) = 0.

Plugging © = —1 into (2) yields f”(—1) = 3/8.

Therefore the quadratic Taylor polynomial T5(x) of f(z) around z = —1 reads
Ty(z) = =2+ 2 (z + 1)* = £(32® 4 62 — 29).

6) Find the value f(2) given that the graph of f passes through the point (1,4) and the slope
of the tangent line at (z, f(z)) is 2z + Inz.

Solution. Having f/(z) = 2z + Inx implies that f has the general form
flz) = I(Qx +Inz)dr =2+ zlnzr —z+C,

where the indefinite integral was found by using the Sum Rule, Power Rule and, in the case
of [Inz dz, Integration by Parts (with u = Inx, dv = dz). The graph of f passing through
the point (1,4) means that 4 = f(1) =12+ 1In1 -1+ C = C. Thus the function is

fx)=a*+rInw —2+4

and therefore
f(2)=2°+2In2-2+4=6+2In2.
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